Skip to main content
Artificial Intelligence

Machine Learning: What It Is, How It Works and Application

By September 20, 2023March 25th, 2024No Comments

Have you ever wondered how Amazon knows exactly what you need before you even do? Or how Google suggests such precise searches based on just a few typed letters? The answer is simple: Machine Learning.

Machine Learning, a subset of artificial intelligence (AI), is already present in many aspects of our lives, from product recommendations to weather forecasts.

Companies of all sizes are adopting this technology, recognizing its potential to drive business growth.

At Pareto, we use Machine Learning to optimize the performance of digital marketing professionals. To delve deeper, keep reading to learn how this technology has evolved, what its benefits are, and most importantly, how it can be incorporated into your marketing strategy.

What Is Machine Learning?

Machine Learning, or Aprendizado de Máquina in Portuguese, is a field of AI that focuses on developing algorithms and models that enable computer systems to learn and make decisions based on data, without being explicitly programmed for specific tasks.

The central goal of Machine Learning is to empower machines to learn from past examples or training data to make predictions or decisions about new unseen data.

In this context, Machine Learning algorithms are the “brains” behind the entire process, enabling AI writing, image generation, and all the new applications that have been developing. They are responsible for learning from training data and creating mathematical or statistical models that can make predictions or decisions based on new data.

The algorithm is fed with training data to learn the relationship between the inputs (data) and the desired outputs (labels or target values). After training, the model is evaluated using test data to check its accuracy and performance. Such an algorithm can unfold further into Supervised Learning.

History and Evolution of Machine Learning

The history and evolution of Machine Learning are marked by decades of development, technological advancements, and innovations that have transformed how machines can learn and make decisions based on data. Here’s an overview of the history and evolution of this area:

  • 1940 – 1950: The concept of Machine Learning began to be explored in the late 1940s and early 1950s. Alan Turing’s pioneering work on the “Universal Machine” and the “Learning Machine” established the theoretical foundations for the field.
  • 1950 – 1960: During this time, the focus was on developing algorithms capable of performing simple machine learning tasks, such as playing chess. Arthur Samuel’s chess program is a notable example of a machine learning system from that era.
  • 1960 – 1970: Machine Learning was mainly associated with research in artificial intelligence. Systems were based on manually coded rules and were not capable of learning directly from data.
  • 1980 – 1990: During this period, there was a renewed interest in Machine Learning, especially in the areas of neural networks and machine learning algorithms. Systems began to become more sophisticated and capable of learning from larger datasets.
  • 1990 – 2000: The field witnessed significant advances in Machine Learning theory and techniques. Algorithms such as Support Vector Machines (SVMs) and Decision Trees gained popularity. The emergence of the Internet also made data sharing for model training more accessible.
  • 2000 – 2010: The Big Data revolution propelled Machine Learning forward as organizations began to collect and store large volumes of data. Deep learning algorithms, such as deep neural networks, began to excel in tasks like speech recognition and computer vision.
  • 2010 – 2020: Machine Learning became a fundamental part of many products and services, including virtual assistants, recommendation systems, and autonomous vehicles. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) became popular in tasks involving image processing and natural language.
  • 2020 – Present: Machine Learning continues to evolve rapidly. Language models like GPT-3, and transfer learning techniques have gained prominence, allowing pre-trained models to be fine-tuned for specific tasks with limited data.

Banner da plataforma Tess AI

What Are the Most Well-Known Types of Machine Learning?

There are three main types of Machine Learning: Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

Supervised Learning

Supervised learning is a Machine Learning paradigm where the algorithm is trained using a set of labeled data, meaning the training examples have an input (data) and a desired output (label or target value).

The goal of supervised learning is to learn a function that maps inputs to outputs based on the training examples, so that the model can make accurate predictions on new unseen data.

Some examples of supervised learning include Classification (predicting a class or category), Regression (predicting a numeric value), Anomaly Detection (identifying unusual instances), among others.

Unsupervised Learning

In unsupervised learning, the algorithm is trained on a set of unlabeled data, meaning there are no desired outputs provided. The main goal is to discover structures, patterns, or clusters in the data.

The aim is to explore the underlying structure in the data and find insights, such as groups of similar items (clustering) or dimensionality reduction for visualization or data compression.

Notable examples in this type include Clustering, Dimensionality Reduction (PCA, t-SNE), Rule Association (discovering relationships between items in a transactional dataset), among others.

Reinforcement Learning

Reinforcement learning is a paradigm where an agent interacts with an environment and learns to make sequential decisions to maximize cumulative reward over time.

The goal is to learn a policy (strategy) that allows the agent to take actions that optimize its reward over multiple decision steps.

For example, Games (such as chess or Go), autonomous robotics, autonomous vehicle navigation, control of dynamic systems, etc.

6 Benefits of Machine Learning for Business

The benefits of Machine Learning are numerous, especially in the business world. It can help companies predict trends, optimize processes, increase efficiency, and, most importantly, improve customer experience.

1. Trend Prediction

Machine Learning allows analyzing large volumes of historical data to identify patterns and trends that may not be easily noticeable to the naked eye.

This is especially useful for predicting future events, such as market demand, consumer behavior, price fluctuations, or even weather events. These predictions can help companies make informed and strategic decisions.

2. Valuable Insights

Machine Learning can extract valuable insights from complex data. It is capable of identifying correlations, relationships, and hidden information in datasets, enabling organizations to make more data-driven decisions.

These insights can help optimize operations, improve the effectiveness of products and services, and even identify new business opportunities.

3. Efficiency

Automating routine tasks and complex processes is one of the main advantages of Machine Learning. It can automate data analysis, email sorting, customer service via chatbot, among many other tasks.

This task automation not only saves time but also reduces human errors and operational costs.

4. Adaptability

Machine Learning models are capable of adapting to changes in data and the environment. This means they can learn from new data and adjust their predictions or decisions accordingly.

Adaptability is essential in dynamic scenarios such as finance, marketing, and cybersecurity.

5. Algorithmic Enterprise

Implementing Machine Learning in an organization can transform it into an “algorithmic enterprise.” This means that decision-making at all levels is driven by data-based insights and predictions, rather than intuition or fixed rules.

This can improve the organization’s agility and its ability to innovate.

6. Better Performances

Machine Learning can improve performance in various tasks. For example, in computer vision, deep learning models have achieved human-level performance in image recognition tasks.

In medicine, machine learning systems can assist in the early identification of diseases. In finance, they can optimize investment portfolios. In summary, Machine Learning can help achieve superior results in a wide range of domains.

Difference between Machine Learning and Big Data

Machine Learning and Big Data are two interrelated concepts that play crucial roles in the information age. However, they are distinct in terms of focus, objectives, and application. Check out the key differences between them!

Machine Learning is a subfield of artificial intelligence that focuses on building algorithms and models that enable automated systems to learn and make decisions based on data.

The main focus of ML is the development of techniques that allow computers to improve their performance on specific tasks as they gain experience with data.

On the other hand, Big Data refers to the management and analysis of extremely large and complex datasets that exceed the processing capacity of traditional systems. The central focus of Big Data is dealing with the volume, variety, velocity, and veracity of data.

Its main goal is to extract meaningful information and insights from large volumes of data, often unstructured, for purposes such as strategic decision-making, trend identification, product and service customization, fraud detection, among others.

We can say that Machine Learning and Big Data often complement each other. The ability to process large volumes of data is essential to feed Machine Learning models with enough information to learn and make accurate decisions.

Difference between Deep Learning and Machine Learning

The difference between Deep Learning and Machine Learning lies in the depth and complexity of the models and techniques involved in each approach.

Both are subfields of AI that focus on the ability to learn from data, but they differ in terms of architecture, application, and depth of learning. See these differences in detail!

Machine Learning is a field of AI that focuses on developing algorithms and models that can learn and improve performance on specific tasks based on data. The focus is on building models that can make predictions or decisions without being explicitly programmed.

And Deep Learning is a subfield of Machine Learning that focuses on deep neural networks, which are models with multiple layers of processing. The primary focus of Deep Learning is to learn hierarchical and complex representations of data, allowing models to automatically capture relevant features.

So, we can say that Machine Learning is suitable for simpler and more direct tasks, where the relationship between inputs and outputs can be modeled relatively simply. Deep Learning shines in complex and abstract tasks, where understanding subtle features is crucial.

Practical Examples of Machine Learning in Marketing

The application of Machine Learning in marketing has become increasingly common to optimize strategies, improve audience segmentation, and increase ROI. Check out some practical examples!

Search Engine Optimization (SEO)

  • Keyword analysis: Machine Learning can be used to identify trends and patterns in search queries. This helps in selecting the most relevant keywords and optimizing content to rank better on search engines.
  • Content recommendations: ML algorithms can suggest topics and keywords based on user preferences, assisting in creating content that attracts a wider audience.
  • Spam and low-quality content detection: ML can be used to automatically identify low-quality or spam content on websites, improving the overall quality of content and ranking in search results.

Content Marketing

  • Content personalization: Machine Learning can analyze user behavior and interaction history to provide highly personalized content recommendations on websites, blogs, and newsletters.
  • Content generation: ML algorithms can be used to automatically create titles, descriptions, and even entire articles based on input topics and data.
  • Content performance analysis: Machine Learning can help identify which types of content and formats work best with different audience segments, allowing for more effective resource allocation.

Paid Media

  • Real-time bidding optimization: ML algorithms can automatically adjust bids in ad campaigns, taking into account factors such as conversion history, user location, and device.
  • Advanced audience segmentation: Machine Learning can identify user profiles with a higher likelihood of conversion and target ads to these specific groups, saving resources and improving ROI.
  • Fraud detection: ML algorithms can detect fraudulent activities in paid media campaigns, such as invalid clicks, helping to save money and improve metric accuracy.

Social Media

  • Sentiment analysis: Machine Learning can automatically analyze sentiment in social media posts, allowing companies to understand the audience’s perception of the brand and products.
  • Audience segmentation: ML algorithms can segment social media followers based on interests, behaviors, and demographics, enabling more targeted campaigns.
  • Trend and viral detection: Machine Learning can identify emerging trends on social media, allowing companies to leverage real-time engagement and marketing opportunities.

Lead Qualification

  • Lead scoring: Machine Learning can assign scores to leads based on their profile and behavior, identifying qualified leads, those most likely to convert into customers.
  • Automatic lead classification: ML algorithms can automatically categorize leads based on predefined criteria, helping the sales team prioritize their efforts.

Automated follow-ups:

  • Based on lead behavior, ML can automate personalized follow-up actions, such as sending emails or inviting to webinars.

Main Trends of Machine Learning for the Future

machine learning: image of a human hand meeting a robotic handMachine Learning is constantly evolving and promises to bring significant innovations in the future. Learn about the main trends we can expect!

Increased Automated Machine Learning (AutoML)

AutoML refers to the automation of previously challenging tasks in the Machine Learning lifecycle, such as data preprocessing, model selection, and hyperparameter tuning. As organizations seek to implement Machine Learning in a variety of contexts, the demand for AutoML will grow.

Additionally, AutoML will allow domain professionals, who are not Machine Learning experts, to develop effective models more easily. AutoML platforms and tools will continue to evolve to make the model development process more accessible and efficient.

Expansion of Federated Learning

Federated Learning is an approach that allows training Machine Learning models on distributed data without needing to centrally share that data. This is crucial for data privacy and security, especially in highly regulated sectors such as healthcare and finance.

In the future, we will see significant expansion of federated learning, with more companies adopting this approach to train models on large volumes of sensitive data without compromising privacy.

Growth of Explainable Machine Learning

As Machine Learning models become more complex, the need to understand why they make certain predictions or decisions becomes crucial, especially in critical applications such as healthcare and justice.

Explainable AI will focus on making models more transparent and capable of providing clear justifications for their actions. This not only improves confidence in model decisions but is also essential for meeting rigorous regulations.

Wider Use of Deep Neural Networks

Deep Neural Networks, such as convolutional and recurrent networks, have driven significant advancements in computer vision, natural language processing, and other domains.

These architectures are expected to continue evolving and being applied in an increasingly wider range of applications. For example, in medicine, deep neural networks can be used for more accurate diagnoses, and in mobility, they can play a crucial role in autonomous vehicles.

Deeper Integration with the Internet of Things (IoT)

The combination of Machine Learning and the Internet of Things (IoT) is a growing trend. IoT devices collect real-time data from sensors and other devices, and Machine Learning can be used for real-time analysis of this data, enabling automated and efficient decision-making.

This is especially relevant in applications such as smart cities, manufacturing, precision agriculture, and healthcare, where IoT and Machine Learning can improve efficiency and people’s quality of life.


As you can see, Machine Learning has become an indispensable tool for companies, not only allowing them to understand their data but also to use it to predict trends, optimize processes, and improve the customer experience.

In the world of marketing, Machine Learning has become increasingly relevant, optimizing strategies and ensuring that professionals make increasingly precise – data-driven – decisions.

In an increasingly competitive business environment, incorporating Machine Learning into the marketing strategy is no longer an option but a necessity. Therefore, it is essential that companies not only adopt Machine Learning but also continue to explore and experiment with its possibilities.

To learn more about topics related to Machine Learning and Artificial Intelligence, we invite you to read our article on Artificial Intelligence Robot, where you will understand how an AI bot works and its contribution to businesses.

Curtiu este artigo?

0 / 5 0 0

Your page rank:


Author: Pareto - Conheça mais sobre o universo das IAs e do Marketing Digital. Acesse já o nosso acervo de conteúdos!